If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+t-132=0
a = 1; b = 1; c = -132;
Δ = b2-4ac
Δ = 12-4·1·(-132)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-23}{2*1}=\frac{-24}{2} =-12 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+23}{2*1}=\frac{22}{2} =11 $
| 41/3+q=51/6 | | 3x+4+2x=5(x-2+7 | | -6{p+3}=-54 | | -7(7b-2)=18+b | | 7y+27+2y+7=90 | | 5x-2/3+3x+2/7=2x | | -5x^-530-90x=0 | | h^2-86=0 | | 3-4x+2(5.5)=9 | | 2(x-3)+12=-3(x-2) | | 3x^2+13+1=0 | | −5x^2−530=90x | | 6(x-7)=-6-2(8x-4) | | p^2-74=-74 | | -3m+12-4m=-7m=14 | | 2r+5=-3 | | 5y-3y=48 | | 4(3b-1)=-5(b-6) | | 10/8w=15 | | x^2+(4x/3)^2=25 | | 2x+6=8+4x+10 | | 6(3m-6)=-6(6+4m)+6m | | 4x-3x=3x-3x-96 | | 3+4(-2k+7)=-(2k+5) | | 3x+2x+10=x-5-9 | | -36x=4x | | 8x+9(-9)=-9 | | 30+8b=470 | | u^2-86=-37 | | x/5+2=3 | | 4(4+5r)-6r=2(6r+1) | | x2−15=x5 |